Decipher - Node documentation
class Decipher
extends stream.Transform

Usage in Deno

import { Decipher } from "node:crypto";

Instances of the Decipher class are used to decrypt data. The class can be used in one of two ways:

  • As a stream that is both readable and writable, where plain encrypted data is written to produce unencrypted data on the readable side, or
  • Using the decipher.update() and decipher.final() methods to produce the unencrypted data.

The createDecipher or createDecipheriv methods are used to create Decipher instances. Decipher objects are not to be created directly using the new keyword.

Example: Using Decipher objects as streams:

import { Buffer } from 'node:buffer';
const {
  scryptSync,
  createDecipheriv,
} = await import('node:crypto');

const algorithm = 'aes-192-cbc';
const password = 'Password used to generate key';
// Key length is dependent on the algorithm. In this case for aes192, it is
// 24 bytes (192 bits).
// Use the async `crypto.scrypt()` instead.
const key = scryptSync(password, 'salt', 24);
// The IV is usually passed along with the ciphertext.
const iv = Buffer.alloc(16, 0); // Initialization vector.

const decipher = createDecipheriv(algorithm, key, iv);

let decrypted = '';
decipher.on('readable', () => {
  let chunk;
  while (null !== (chunk = decipher.read())) {
    decrypted += chunk.toString('utf8');
  }
});
decipher.on('end', () => {
  console.log(decrypted);
  // Prints: some clear text data
});

// Encrypted with same algorithm, key and iv.
const encrypted =
  'e5f79c5915c02171eec6b212d5520d44480993d7d622a7c4c2da32f6efda0ffa';
decipher.write(encrypted, 'hex');
decipher.end();

Example: Using Decipher and piped streams:

import {
  createReadStream,
  createWriteStream,
} from 'node:fs';
import { Buffer } from 'node:buffer';
const {
  scryptSync,
  createDecipheriv,
} = await import('node:crypto');

const algorithm = 'aes-192-cbc';
const password = 'Password used to generate key';
// Use the async `crypto.scrypt()` instead.
const key = scryptSync(password, 'salt', 24);
// The IV is usually passed along with the ciphertext.
const iv = Buffer.alloc(16, 0); // Initialization vector.

const decipher = createDecipheriv(algorithm, key, iv);

const input = createReadStream('test.enc');
const output = createWriteStream('test.js');

input.pipe(decipher).pipe(output);

Example: Using the decipher.update() and decipher.final() methods:

import { Buffer } from 'node:buffer';
const {
  scryptSync,
  createDecipheriv,
} = await import('node:crypto');

const algorithm = 'aes-192-cbc';
const password = 'Password used to generate key';
// Use the async `crypto.scrypt()` instead.
const key = scryptSync(password, 'salt', 24);
// The IV is usually passed along with the ciphertext.
const iv = Buffer.alloc(16, 0); // Initialization vector.

const decipher = createDecipheriv(algorithm, key, iv);

// Encrypted using same algorithm, key and iv.
const encrypted =
  'e5f79c5915c02171eec6b212d5520d44480993d7d622a7c4c2da32f6efda0ffa';
let decrypted = decipher.update(encrypted, 'hex', 'utf8');
decrypted += decipher.final('utf8');
console.log(decrypted);
// Prints: some clear text data

Constructors

new
Decipher()

Methods

final(): Buffer

Once the decipher.final() method has been called, the Decipher object can no longer be used to decrypt data. Attempts to call decipher.final() more than once will result in an error being thrown.

final(outputEncoding: BufferEncoding): string
setAutoPadding(auto_padding?: boolean): this

When data has been encrypted without standard block padding, callingdecipher.setAutoPadding(false) will disable automatic padding to prevent decipher.final() from checking for and removing padding.

Turning auto padding off will only work if the input data's length is a multiple of the ciphers block size.

The decipher.setAutoPadding() method must be called before decipher.final().

update(data: ArrayBufferView): Buffer

Updates the decipher with data. If the inputEncoding argument is given, the dataargument is a string using the specified encoding. If the inputEncodingargument is not given, data must be a Buffer. If data is a Buffer then inputEncoding is ignored.

The outputEncoding specifies the output format of the enciphered data. If the outputEncodingis specified, a string using the specified encoding is returned. If nooutputEncoding is provided, a Buffer is returned.

The decipher.update() method can be called multiple times with new data until decipher.final() is called. Calling decipher.update() after decipher.final() will result in an error being thrown.

update(
data: string,
inputEncoding: Encoding,
): Buffer
update(
data: ArrayBufferView,
inputEncoding: undefined,
outputEncoding: Encoding,
): string
update(
data: string,
inputEncoding: Encoding | undefined,
outputEncoding: Encoding,
): string